固态电池新突破,清华团队解决两大难题,安全与续航兼具,商业化何时到来?

吃瓜电子官网最新热点:固态电池新突破,清华团队解决两大难题,安全与续航兼具,商业化何时到来?

更新时间: 浏览次数:3570

固态电池又迎来新突破。 9月25日,清华大学化学工程系😎发文称,张强团队合作在固态电池聚合物电解质研究领域取得进展。🔥其成功开发出一种新型含氟聚醚电解质,为开发实用化的高安全性、😘高能量密度固态锂电池提供了新思路与技术支撑。相关成果9月24🤗日在线发表于《自然》。 目前,全固态电池主要有硫化物、😉氧化物、聚合物和卤化物四种路线。当下主流为硫化物,而此次张强👍团队领衔研发的是聚合物电解质。 四种技术路线,哪种将率😎先实现商业化? 起点研究创始人、研究院院长李振强对《每😅日经济新闻》记者表示:“全固态电池当下还没有真正量产,厂家均❤️以小试、中试为主。现在判断技术路线是比较困难的,也是不科学的😴。” 对于全固态电池量产存在的问题,真锂研究院院长墨柯👍认为:“技术开发上还有很多问题没有解决,更不必说量产。” 😡 清华团队解决商业化两大难题 随着eVTOL(电动垂🤯直起降飞行器)和人形机器人的发展,能量瓶颈愈发突出。业界亟需⭐一种高能量密度、高安全需求的新型电池,这就是全固态电池。但全😘固态电池在技术开发及量产上仍存在诸多问题。其中,离子电导率和😢固固界面问题最为突出。 高工产研方面告诉记者:“固态电⭐池核心问题是在保证一定离子电导率条件下材料接触的固固界面问题😜。” 而清华团队此次开发出来的新型电解质,既能解决离子😢电导率问题,也能解决固固界面问题。 当下,国内外主流厂😅商纷纷选在硫化物路线研发全固态电池,正是看中其离子电导率与液😍态电解质相差无几。不过,硫化物也存在不少问题,最突出的当属固🤔固界面问题。 墨柯向记者解释了固固界面问题,其表示:“🤩正负极的极片是固态,两者间夹的固态电解质也是固态。极片与电解⭐质之间需严丝合缝,这样锂离子移动的通道就不会有障碍。假如固固😀界面之间存在缝隙,锂离子是无法在空气中传播的。只要存在缝隙,⭐离子穿过的数量就将大受影响,锂电池的工作也会受到影响。” 😉 “刚生产出来的固态电池可以严丝合缝,但电池内部存在温度变🤯化,而电池材料难以同步收缩膨胀。经历多个循环后,固固界面肯定🎉有缝隙。因此,解决固固界面非常困难。”墨柯说道。 此次🤔清华团队使用原位聚合技术解决了固固界面问题。对此,墨柯称:“🤔当固固界面出现缝隙,聚合物可以自生长,去填充固固界面存在的缝😢隙。” 值得一提的是,聚合物电解质虽然能够解决固固界面😘问题,但其离子电导率较低,这也将影响充放电速度以及锂电池各项🔥性能。 清华团队的做法是,基于锂键化学原理,团队构建了🌟独特的“–F???Li????O–”配位结构,诱导形成具有高🤩离子电导率的富阴离子溶剂化结构,进而在电极表面衍生出富含氟化😊物的稳定界面层,显著提升了界面稳定性。 展开全文 😆 硫化物存在巨大挑战 目前,主流厂商选择的是硫化物全固👏态路线。TrendForce集邦咨询分析师曾佑鹏告诉记者:“😅主流技术路线包括聚合物、氧化物、硫化物。硫化物技术路线最为热😊门,据TrendForce集邦咨询统计,全球已公布的固态电池😊研发技术路线中,约有37%选择此路线,尤其是日韩企业。” 😆 对于硫化物存在的固固界面问题,也有厂商采取类似清华团队的👏做法,即使用原位聚合技术。 简单来说,就是制备一个硫化😘物与聚合物混合电解质的固态电池。其中,硫化物离子电导率较高,🤗而聚合物可以填充固固界面的缝隙。如此一来,固固界面和离子电导🙄率的问题都将得到解决。 不过,硫化物不仅存在技术上的挑💯战,还存在生产和价格上的挑战。 李振强表示:“硫化物最🚀大的问题,是遇水反应生成硫化氢,而硫化氢是剧毒的。” 😎墨柯也进一步表示:“当下极片生产过程中,无法做到完全没有水分👍。正极、负极的粉末,与粘结剂混合在一起搅拌,然后再涂覆到铝箔👏、铜箔上,再烘干。此外,空气中也是有水分。” 价格上,👏根据高工锂电资料,作为硫化物固态电解质的关键前驱体,硫化锂占💯据电解质材料成本的77%至80%,当前市场价格高达300万元👏/吨至400万元/吨。 相比之下,电解液价格不足2万元😉/吨。可以看出,硫化物固态电解质价格高昂。 此外,李振🤯强也表示:“全固态四种路线中,聚合物电解质是最成熟的。聚合物🎉已经搞了很多年,而且在手机电池里也使用了很多年。而硫化物电解😁质是全新的产品,其供应链还不成熟。(硫化物)固态电解质,能够😀每个月吨级出货的都很少。” 不过,对于清华团队所使用的😅含氟聚醚电解质供应链是否成熟,其表示还需要进一步研究。 😡 聚合物新突破的意义 固态电池之所以备受追捧,一是安全😉,二是续航。安全主要是固态电解质提供,而续航取决于能量密度。😜后者与正极、负极材料选择密切相关,特别是正极材料。 负😘极材料方面,为了追求能量密度,正在从石墨负极走向硅碳负极,远😂期将实现锂金属负极。而正极材料的选择则相对保守,很多厂商选择🙌高镍三元。 事实上,富锂锰基作为正极,其能够实现的能量❤️密度将大幅超越高镍三元。据了解,以富锂锰基层状氧化物作为正极🌟材料的固态电池体系,展现出实现能量密度突破600瓦时每千克的😁潜力。 当前主流的硫化物电解质,适配富锂锰基较为困难。🥳高工产研称:“目前还没有解决硫化物固态电解质适配富锂锰基正极😎材料。若解决,可以大幅度提升锂电池能量密度,降低锂电池成本,😜降低锂电池的资源压力。阻碍点在于,高电压平台的富锂锰基正极材😡料与硫化物存在高电压适配问题,低电压平台的富锂锰基存在电压降😎现象(导致锂电池循环寿命低),综合性能不及三元材料,适配意义⭐低。” 高工产研认为:“电解质在兼容高电压正极和强还原🤩性负极方面,目前仍不成熟,当前实验室仍以高镍三元+硅基负极材🚀料为主。” 而清华方面称,研究团队在聚醚电解质中引入强🤔吸电子含氟基团,显著提升了其耐高压性能,使其可匹配4.7V(😎伏)高电压富锂锰基正极,实现了单一电解质对高电压正极与金属锂😀负极的同步兼容。 也就是说,该电解质能够匹配能量密度非😊常高的正极材料富锂锰基和负极材料锂金属。 “现在固态电🥳池不使用富锂锰基,是由于多方面原因,比如循环稳定性相对较差,🌟没有适配高电压的电解质也是重要原因之一。”鑫椤资讯资深研究员😘龙志强表示。 商业化何时到来? 对于全固态电池的🥳商业化是否已经到来,墨柯的回答是:“还早得很。硫化物技术还有🥳很多需要解决的问题。如果用氧化物、聚合物电解质材料去做是可以😊的。但离子电导率太低,基本上实用价值很弱,正常的充放电速度达🚀不到。” 关于商业化,李振强认为,由于电解质价格高昂,👍全固态电池将率先使用在低空飞行器、人形机器人等对能量密度、充😘放电倍率要求高的场景。 此外,其表示半固态电池的商业化😎已经开始。这主要受罗马仕充电宝事件的影响,行业从追求低价转向🚀追求安全。使用半固态电池成本没有增加多少,但安全性要强上不少🤯。 可以看出,安全和能量密度两大诉求正在催动固态、半固😁态电池的商业化。而2027年,正是全固态一个非常关键的时间点😢。 李振强告诉记者:“磷酸铁锂和三元是经过长时间验证,🎉其技术路线之争还发生逆转。全固态电池技术路线还没有经过验证。😅明年将有一些样车出来,而产品出来才会根据终端客户的需求进行改💯进。这是一个不断改进的系统工程,而不是材料厂商、电池厂商、设🎉备厂商自己宣称(全固态电池)量产。” 此次清华团队的新😴突破,对于商业化的推进有何意义呢? 高工产研认为:“若😎解决了常温下聚合物电解质离子电导率低的问题,聚合物电解质大概⭐率可以替代硫化物固态电解质和氧化物固态电解质。主要系聚合物具😊备以下优点。一是固固界面接触远远好于硫化物和氧化物;二是电池😂制备工艺简单(与液态锂电池设备兼容性高),电池生产良率高,成😅本低;三是聚合物电解质成本低廉。” 也就是说,硫化物目🤔前存在的固固界面、生产成本、材料成本等问题,对于聚合物而言难🤔度较低。一旦聚合物解决离子电导率低的问题,或将成为全固态电池😴新的方向。 正如液态电池中磷酸铁锂与三元材料的长期交锋😀,全固态电池各类技术路线的角逐,才刚刚开始。 每日经济😘新闻 【免责声明】本文仅代表作者本人观点,与和讯网无关😂。和讯网站对文中陈述、观点判断保持中立,不对所包含内容的准确🥳性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,💯并请自行承担全部责任。邮箱:news_center@staf🤯f.hexun.com返回搜狐,查看更多

北京市:市辖区:(东城区、西城区、朝阳区、丰台区、石景山区、海淀区、门头沟区、房山区、通州区、顺义区、昌平区、大兴区、怀柔区、平谷区、密云区、延庆区)

天津市:市辖区:(和平区、河东区、河西区、南开区、河北区、红桥区、东丽区、西青区、津南区、北辰区、武清区、宝坻区、滨海新区、宁河区、静海区、蓟州区)

河北省:石家庄市:(长安区、桥西区、新华区、井陉矿区、裕华区、藁城区、鹿泉区、栾城区、井陉县、正定县、行唐县、灵寿县、高邑县、深泽县、赞皇县、无极县、平山县、元氏县、赵县、石家庄高新技术产业开发区、石家庄循环化工园区、辛集市、晋州市、新乐市)

唐山市:(路南区、路北区、古冶区、开平区、丰南区、丰润区、曹妃甸区、滦南县、乐亭县、迁西县、玉田县、河北唐山芦台经济开发区、唐山市汉沽管理区、唐山高新技术产业开发区、河北唐山海港经济开发区、遵化市、迁安市、滦州市)

秦皇岛市:(海港区、山海关区、北戴河区、抚宁区、青龙满族自治县、昌黎县、卢龙县、秦皇岛市经济技术开发区、北戴河新区)

邯郸市:(邯山区、丛台区、复兴区、峰峰矿区、肥乡区、永年区、临漳县、成安县、大名县、涉县、磁县、邱县、鸡泽县、广平县、馆陶县、魏县、曲周县、邯郸经济技术开发区、邯郸冀南新区、武安市)

邢台市:(襄都区、信都区、任泽区、南和区、临城县、内丘县、柏乡县、隆尧县、宁晋县、巨鹿县、新河县、广宗县、平乡县、威县、清河县、临西县、河北邢台经济开发区、南宫市、沙河市)

保定市:(竞秀区、莲池区、满城区、清苑区、徐水区、涞水县、阜平县、定兴县、唐县、高阳县、容城县、涞源县、望都县、安新县、易县、曲阳县、蠡县、顺平县、博野县、雄县、保定高新技术产业开发区、保定白沟新城、涿州市、定州市、安国市、高碑店市)

张家口市:(桥东区、桥西区、宣化区、下花园区、万全区、崇礼区、张北县、康保县、沽源县、尚义县、蔚县、阳原县、怀安县、怀来县、涿鹿县、赤城县、张家口经济开发区、张家口市察北管理区、张家口市塞北管理区)

承德市:(双桥区、双滦区、鹰手营子矿区、承德县、兴隆县、滦平县、隆化县、丰宁满族自治县、宽城满族自治县、围场满族蒙古族自治县、承德高新技术产业开发区、平泉市)

沧州市:(新华区、运河区、沧县、青县、东光县、海兴县、盐山县、肃宁县、南皮县、吴桥县、献县、孟村回族自治县、河北沧州经济开发区、沧州高新技术产业开发区、沧州渤海新区、泊头市、任丘市、黄骅市、河间市)

文 | 晓枫说 文 | 晓枫说 在全球气候治理与😴能源革命的双重浪潮下,海运业这条全球贸易的“动脉”——正经历🌟一场静默却深刻的革命。 IMO数据显示,航运业约占全球🙌温室气体排放量的2.89%,其脱碳进程直接关乎《巴黎协定》目⭐标的实现。随着碳强度指标(CII)、欧盟排放交易体系(ETS😀)从政策蓝图转化为实际成本,一场围绕技术路线、运营模式与商业🤯逻辑的全面竞赛已然拉开帷幕。在这场全球性的转型中,以ABB、😀瓦锡兰为代表的国际技术提供商,以中国船舶集团、中远海运等中国💯领军企业及众多中小创新型科技企业,共同勾勒着“全船电气化”为❤️血脉、“系统智能化”为神经的未来船舶蓝图。这幅跨国产学研协同🙌绘制的蓝图描绘了清晰的愿景,但其落地之路却布满需要全球行业共😉同应对的复杂挑战。 一、系统重构:电气化是底层逻辑变革🤗,而非简单动力替换 事实上,行业认知正经历一个深化的过🙌程——船舶电气化的核心,并非仅是安装一套电池组那么简单,其本🙄质是从“机械驱动”向“电力驱动”的范式转移,是对船舶能源分配🚀与推进系统的彻底重构。 在这一领域,东西方的技术路径呈🤯现出有趣的对比与融合。ABB力推的车载直流电网(DC Gri😢d)概念,与西门子能源的直流港口方案、瓦锡兰的混合动力解决方💯案等代表了欧洲的技术思路,其核心优势在于构建了一个高度集成化🤗的“能源平台”。相较于传统交流电系统,直流电网能减少高达10😉-20%的能源转换损耗,并显著节省设备空间与重量。更重要的是🤯,它作为一个开放的架构,能够灵活兼容当前的锂离子电池、正在兴🙌起的甲醇/氨燃料电池以及未来的新型储能技术。这种设计哲学,为😅船东提供了至关重要的“技术中立性”和“面向未来”的弹性,有效😂规避了因过早押注单一绿色燃料技术而导致的资产搁浅风险。 😉 视线回到国内,中国船舶集团在高端邮轮、大型液化天然气(LN👏G)船等领域展现的系统集成能力,以及宁德时代在船舶用锂离子电😉池、钠离子电池方面的技术创新,则体现了中国在产业链中后端的快😊速追赶。特别是宁德时代针对内河航运推出的“船舶动力电池系统”😁,已应用于长江流域等多艘电动船舶,展示了中国在特定应用场景下😘的市场化突破。 市场的选择清晰地揭示了现实的转型路径。😡根据挪威船级社(DNV)的统计,混合动力方案在新造船与改装船🎉市场中占据重要地位。这反映了行业在理想与现实间的权衡:混合动👍力作为关键的过渡技术,允许船舶在排放控制区(ECAs)和港口👍内实现“零排放”静音航行,以满足局部最严苛的法规并提升企业C😢SR形象,同时在开阔水域依靠主发电机保障续航与经济性。中远海😎运集团在旗下多艘大型集装箱船上实施的混合动力系统改造项目,正🥳是这种务实路径的体现——通过在现有船队上进行技术升级,而非全👍部新建,以更具经济性的方式推进减排。 然而,技术的先进😂性无法自动跨越经济的鸿沟。核心挑战在于,这套系统重构所带来的🤩高昂初始资本支出。一艘采用先进直流电网和电池系统的新造船,其🙄建造成本可能比传统船舶高出20%-40%,绿色溢价最终需要在😆整个价值链中被消化。这催生了新的商业合作模式,例如一些航运公🤔司开始与货主签订包含“绿色溢价”的长期运输合同,或寻求绿色金🙌融的支持。技术的普及速度,将不取决于其技术指标的巅峰,而取决😘于其全生命周期成本的竞争力。在这方面,中国银行、进出口银行等😆金融机构对绿色船舶提供的优惠利率贷款,以及一些中国船厂推出的😢“能源管理合同”模式,正在尝试通过金融创新来降低技术应用的门🥳槛。这种技术+金融的整体解决方案,可能成为推动技术普及的重要😀助力。 展开全文 二、从自动化到自主化:数据驱动🥳运营模式的范式转移 智能化是脱碳的另一大支柱,其价值远🔥超节省人力,其终极目标是通过数据驱动,实现全局能效最优和运营😡模式的重塑。 趋势正从“单船自动化”迈向“船岸一体化智🎉能运营”。ABB Ability™、瓦锡兰的船舶效能管理系统😁(EMS)等代表了西方公司在软件平台和系统集成方面的传统优势🚀。这意味着,传统的船长和轮机长角色正在演变,他们与岸上的专家😍团队共同构成一个“数字船队”的运营中枢。这种模式不仅能优化单😂船航速、航线以减少燃油消耗(据估计可带来5-10%的能效提升🙄),更能实现预测性维护,大幅降低故障停航风险。而中国公司则从🙌不同维度切入:华为的5G技术、船载通信模块和云服务正在为智能😡航运提供数字基础设施;上海国际港务集团打造的“智慧港口”系统😴,通过优化船舶在港口的作业效率,间接减少了船舶的等待时间和排⭐放;而国内诸如百舸新能这样的众多中小创新型企业,也在围绕船岸😁一体模式、新能源动力系统等加快研发和产业化进程。 在自❤️主航行这一前沿领域,西方公司如康士伯与Yara合作的“Yar😍a Birkeland”项目引人注目,而中国的进展同样值得关💯注。交通运输部水运科学研究院牵头制定的智能船舶技术标准,青岛🙄无人船基地的测试验证平台,以及系统科技有限公司等企业在自主避😍碰、智能靠离泊等关键技术上的突破,显示中国正在构建自主可控的🔥技术体系。特别是中船重工第716研究所开发的“船海智云”工业👏互联网平台,已应用于数百艘船舶,实现了设备健康管理、能效优化😂等功能的国产化替代。 然而,这片“新蓝海”也充满了“暗👏礁”。 一是法规与责任的空白。当智能系统做出决策导致事😅故时,法律责任的界定是全球监管机构面临的崭新课题。IMO正在🤔制定的《海上自主水面船舶(MASS)规则》进展谨慎,便反映了😡这一复杂性。而中国机构和企业也正积极参与相关国际标准的制定,🤩这种技术标准话语权的竞争,其重要性不亚于技术本身的竞争。 🤩 二是网络安全的致命脆弱性。高度互联的船舶使其成为网络攻击⭐的高价值目标,2020年某大型集装箱航运公司遭遇的网络攻击导🤔致全球业务中断,已为全行业敲响警钟。 三是人机协作的挑😢战。船员角色将从操作者转变为系统管理者和监督者,这一转型需要❤️体系化的培训和文化适应,对航海教育体系提出了全新要求。 🙌 三、脱碳的终极拷问:绿色燃料的抉择与全球基础设施的协同 🤗 领先的电气化平台解决了绿色能源的输送和分配问题,但最根本🔥的挑战在于——绿色能源本身从何而来?这引出了脱碳征程中最具争😊议和不确定性的领域。 目前,液化天然气(LNG)、甲醇🤔、氨、氢等选项构成了一个充满竞争的“燃料罗生门”。马士基巨资😁投入绿色甲醇船舶,中远海运集团积极探索氨燃料动力技术,而一些😜欧洲船东则看好LNG的过渡作用,每一种选择都面临“Well-👏to-Wake”(从油井到螺旋桨)全生命周期碳排放的严格审视😆。因此,船舶电气化系统的真正绿色成色,最终取决于为其供电的能🙄源来源是否在全生命周期内真正清洁。 更深层次的矛盾是“🌟鸡与蛋”的全球基础设施困局。船东不愿投资某类绿色燃料动力船,🙌因为全球加注网络几乎为空白;能源公司不愿投资数百亿美元建设全🤯球加注站,因为市场上对应的船舶数量不足。破解这一死结,单靠市😍场力量远远不够。 在这方面,中国依托其强大的基建能力,😊在国内长江流域、珠江三角洲等内河航道沿线加快建设船舶充电、加🤗注设施,这种“先内河、后沿海、再远洋”的渐进式基础设施布局策😆略,为技术验证和商业模式探索提供了宝贵的试验场。然而,要将这⭐种国内经验复制到全球航线网络,仍面临巨大的投融资和国际协作挑🙄战,亟需强有力的国际政策协调(如全球性碳税机制)、巨额的基础❤️设施投资以及形成行业共识的标准体系。这已超越技术范畴,成为对🔥全球治理智慧的考验。 然而,我们必须清醒地认识到,技术😡方案的成熟只是漫长征程的起点。未来的成功将不取决于任何单一国⭐家或公司的技术突破,而取决于整个全球生态系统的协同进化,比如🚀技术路径的多元化与融合,能否形成尊重不同国家、不同航线条件下😀的技术选择,促进东西方技术方案的交流互鉴,而非形成新的技术壁🙌垒;比如商业模式的创新与共赢,能否建立合理分摊绿色溢价、覆盖😀全生命周期成本的商业模式,确保发达国家和发展中国家的船东都能😊"用得起"绿色技术;再比如治理体系的包容性与有效性,在IMO😴等多边框架下,能否构建平衡环保雄心、技术可行性和经济承受力的🎉国际规则,等等。 可以说,未来十年,海运业这艘巨轮将航😂行在技术的“星辰大海”与现实的“惊涛骇浪”之间。这场转型,既💯是对人类工程智慧的考验,更是对全球合作精神与商业创新能力的终🚀极测验。唯有产业链上下同舟共济,方能在可持续发展的航道上行稳⭐致远。返回搜狐,查看更多

发布于:邹平市
评论
全部
还没有人评论过,快来抢首评
抢首评

推荐阅读

“京美淘”正在成为山姆平替

齐鲁晚报·齐鲁壹点 2025-11-09 01:02:31 8079

数据信任危机正在华尔街上演!“新债王”也信不过美国政府?

齐鲁晚报·齐鲁壹点 2025-11-09 07:46:34 8865

又要背锅?欧洲谨慎对待特朗普对乌言论,怀疑是一个“局”

齐鲁晚报·齐鲁壹点 2025-11-09 02:50:11 3531

特朗普做出“重大承诺”:不会允许以色列吞并约旦河西岸!

齐鲁晚报·齐鲁壹点 2025-11-09 09:54:58 4538

马克龙“拿捏”特朗普:只有他能向以施压,只有停战才能拿和平奖

齐鲁晚报·齐鲁壹点 2025-11-09 02:45:36 5713

北欧两大机场因不明无人机停摆,丹麦首相:不排除俄罗斯的参与

齐鲁晚报·齐鲁壹点 2025-11-09 00:04:45 5058

美联储官员隔空激辩:鲍曼要加快降息,古尔斯比呼吁谨慎

齐鲁晚报·齐鲁壹点 2025-11-09 07:31:29 5392

特朗普前经济顾问警告:关税或是就业市场恶化的推手!

齐鲁晚报·齐鲁壹点 2025-11-09 06:03:59 7909

最后的“摊牌”!民主党人计划本周四与特朗普当面对决

齐鲁晚报·齐鲁壹点 2025-11-09 10:15:46 6401

全世界都在等他“划重点”!鲍威尔会给出市场想要的鸽派信号吗?

齐鲁晚报·齐鲁壹点 2025-11-09 03:28:38 8769

美联储面临“最危险”的数周!112年的独立性会否就此打破?

齐鲁晚报·齐鲁壹点 2025-11-09 02:02:25 2006

又一位美联储鹰派官员发声:进一步降息的空间有限

齐鲁晚报·齐鲁壹点 2025-11-09 04:09:45 6667

金银比翼齐飞,花旗再度上调金价预期,看好铜铝接棒大涨!

齐鲁晚报·齐鲁壹点 2025-11-09 05:44:27 8685

法沙牵头“两国方案”,美以抵制!中东火药桶再燃?

齐鲁晚报·齐鲁壹点 2025-11-09 06:24:41 9525

日本首相候选人林芳正明确立场:支持央行加息政策

齐鲁晚报·齐鲁壹点 2025-11-09 03:40:38 4498

前美联储“三把手”:鲍威尔依旧牢牢掌握美联储!

齐鲁晚报·齐鲁壹点 2025-11-09 02:27:18 5072

初请数据上演“魔幻秀”:从近四年最高,瞬间变为近四年最大降幅!

齐鲁晚报·齐鲁壹点 2025-11-09 08:28:56 8494

哈塞特“点赞”美联储:降息25个基点是“审慎之举”!

齐鲁晚报·齐鲁壹点 2025-11-09 04:20:53 3238

美国政府关门风险升级!民主党抛出重磅反提案,不谈判就关门

齐鲁晚报·齐鲁壹点 2025-11-09 01:21:01 5720

回旋镖来了?外媒爆料:库克干过的事,美财长也干了!

齐鲁晚报·齐鲁壹点 2025-11-09 01:56:30 5351

美联储降息前夕,民主党急提法案剑指米兰双重任职争议!

齐鲁晚报·齐鲁壹点 2025-11-09 04:56:59 4403
为您推荐中
暂时没有更多内容了……